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In closed systems, control over the size of monodisperse metal-oxide colloids is generally limited to sub-
micrometric dimensions. To overcome this difficulty, we explore the formation and growth of silica particles
under constant monomer supply. The monomer source is externally driven by the progressive addition into the
system of one of the precursors. Monodisperse spherical particles are produced up to a mesoscopic size. We
analyze their growth versus the monomer addition rate at different temperatures. Our results show that in the
presence of a continuous monomer addition, growth is limited by diffusion over the investigated temporal
window. Using the temperature variation of the growth rate, we prove that rescaling leads to a data reduction
onto a single master curve. Contrary to the growth process, the final particle’s size reached after the end of the
reagent supply strongly depends on the addition rate. The variation of the final particle size versus addition rate
can be deduced from an analogy with crystal formation in jet precipitation. Within this framework, and using
the temperature dependences of both the particle growth law and the final size, we determine the value of the
molecular heat of dissolution associated to the silica solubility. These observations support the fact that
classical theories of phase-ordering dynamics can be extended to the synthesis of inorganic particles. The
emergence of a master behavior in the presence of continuous monomer addition also suggests the extension of
these theories to open systems.
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I. INTRODUCTION

The synthesis of fine mesoscopic particles of targeted
sizes is now required in numerous high technology applica-
tions as different as ceramics, catalysis, pigments, recording
materials, medical diagnostics, or photonics �1,2�. Since
most physical properties of colloids are size dependent, it is
essential to control their monodispersity as well as their uni-
formity in shape and composition. Reaching this goal re-
quires a detailed understanding of both their mechanisms of
formation and growth, under various experimental condi-
tions. Classically, precipitation is initiated by fast quenching
conditions, such as thermal quenching of a solution within
the miscibility gap in which the solution becomes thermody-
namically metastable �3�, or by pouring “instantaneously” a
chemical species into another to initiate a chemical reaction
�4�. These two situations are called conservative because
their overall composition does not vary during the precipita-
tion. For each case, the control over the synthesis of mono-
disperse particles up to mesoscopic scale is made difficult for
two main reasons: �i� the segregation intrinsically leads to
polydispersity �due to the classical Lifshitz-Slyozov distribu-
tion �5�, for instance� and �ii� the monodispersity is limited to
submicrometric dimensions for growth driven by chemical
reactions �6�. Even in seeded experiments �7,8�, where

growth is initiated using preformed nuclei, secondary nucle-
ation cannot be avoided beyond a certain particle size �typi-
cally of the submicrometric order�, preventing the formation
of monodisperse mesoscopic particles. By contrast, experi-
mental investigations of photographic colloid production by
the double-jet technique �9� have shown that continuous
changes in composition obtained by controlling the monomer
source strongly improve particle monodispersity. The in-
voked reason is that particle growth proceeds in a starved
situation as reagents are added �10�. Moreover, as opposed to
classical precipitation, the number of particles in solution
asymptotically becomes constant and proportional to the ad-
dition rate when growth is limited by diffusion. This was
experimentally and theoretically illustrated in the case of sil-
ver halides �11,12�. However, despite these very appealing
properties, such experimental procedures have been almost
exclusively limited to the control of photographic colloids
�11,13�. With the exception of silver halides, to the best of
our knowledge, the only experimental verification of the lin-
ear relation between particle number and addition rate con-
cerns the synthesis of uniform ZnO particles �8�. In a more
general frame, such kinetic behaviors remain almost unex-
plored even if particle growth in open systems has recently
received some confirmation in material-independent com-
puter simulations at vanishing supersaturation �14�. Con-
fronting experimental results for different systems would cer-
tainly permit one to check whether or not nucleation and
growth under continuous supply of monomer can be gener-
alized to colloids other than silver halides. This is the pur-
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pose of our work, which is devoted to the formation of silica
particles by inorganic polymerization.

We investigate the growth of monodisperse silica particles
�15� with diameter up to 2 �m by controlling the effects of
the progressive addition of an alcoholic solution of tetraethy-
lorthosilicate �TEOS�, defined herein as the monomeric pre-
cursor, in a hydroalcoholic mixture of ammonia. This choice
is motivated by the intrinsic importance of silica as one of
the most familiar inorganic metal oxides, and by the common
use of silica colloids in fundamental as well as practical re-
search areas �16�.

The paper is organized as follows. In Sec. II we describe
the experimental procedures implemented to investigate the
particle growth in open conditions. Section III is devoted to
our experimental results whereas Sec. IV focuses on the the-
oretical background of particle growth for both closed and
open configurations. In Sec. V we then discuss our results.
We finally conclude in Sec. VI with the opportunity offered
by the present work to predict the properties of colloidal
growth in open conditions.

II. SETUP AND EXPERIMENTAL CHARACTERIZATIONS

The preparation of monodisperse silica particles, first de-
scribed by Kolbe �17�, generally proceeds with the hydroly-
sis and condensation of tetraalkoxysilanes �often tetraethy-
lorthosilicate �TEOS� �Si�OR�4 with R=C2H5�� in a mixture
of alcohol and water, with ammonia used as a catalyst
�18,19�. Ultrapure water, TEOS �Si�OC2H5�4, 99%, Aldrich
Chemical Co.�, ethanol �C2H5OH, J.T. Baker, 99.9%�, and
ammonia �NH4OH, 28%, Aldrich Chemical Co.� are used as
starting materials without further purification. The solutions
are prepared at room temperature under inert argon atmo-
sphere. The temperature of the reactor is controlled with an
accuracy of ±0.05 °C by a thermoregulated bath �LAUDA,
E200, ecoline SRE2312�. The silica particles are grown by
the hydrolysis of TEOS according to the following procedure
�8�. We first prepare separately two solutions: I �5 ml TEOS
in 30 ml ethanol� and II �9.5 ml aqueous ammonia in 50 ml
ethanol�. The total volume of solutions I and II, as well as the
reagent concentrations, are the same for all our experiments.
The overall molar ratio for TEOS/NH3/H2O is 1/6.3/15.2.
This value is chosen in order to reach final particle diameters
in the 1 to 2 �m mesoscopic range. Solution I is added at a
controlled flow rate by a syringe pump, under an argon blan-
ket into the thermoregulated round bottom flask containing
solution II under mechanical stirring.

Analysis of the shape and the monodispersity of the pro-
duced SiO2 particles is performed by transmission electron
microscopy �TEM� �JEOL JEM-2000 FX transmission elec-
tron microscope, using an accelerating voltage of 200 kV� at
room temperature. Their growth is characterized by a home-
made dynamic light scattering apparatus using a c.w. Ar+

laser �wavelength in vacuum �0=514 nm� and an ALV5000
correlator. During the TEOS addition, we regularly pick one
or two drops of solution in the reactor and quickly dilute
them in 10 ml of alcohol in order to instantaneously stop the
reaction. To increase the measurement accuracy, the mean
particle size for each sample is then deduced by fitting the

relaxation time of the correlation function versus the square
modulus of the transfer wave vector for varying scattering
angle �.

III. EXPERIMENTAL RESULTS

A. Effect of stirring speed on particle growth

To determine the relevant mechanisms involved in par-
ticle growth, we first check the influence of the stirring speed
on the final particle size obtained well after the end of the
TEOS addition. We perform a set of experiments for an ad-
dition rate of 125 �l /min at T=20 °C with stirring speeds
varying between 300 and 700 rpm. For the whole set of
attempts, we find a mean final particle radius Rf
= �480±10�nm. Such a good reproducibility is not surprising
since the associated hydrodynamic Peclet number Pe, which
compares the particle advection versus the solute diffusion
within the reactor �20�, is much smaller than unity. By defi-
nition, Pe is given by Pe=�R2 /Dm, where �, R, and Dm are,
respectively, the angular velocity associated to the stirring,
the particle radius, and the molecular diffusion coefficient of
the monomer. Using the ethanol viscosity �=1.2
�10−3 Pa s at T=20°C, as it constitutes more than 90% of
the solvent phase at the end of the growth, and a typical
monomer size �2Å, we find Dm=10−9cm2/s. On the other
hand, the angular velocity � varies from 5 Hz �at 300 rpm�
to 12 Hz �at 700 rpm�. Since experiments lead to a final
particle size Rf �500 nm, we find 10−3�Pe�3�10−3 for
the extreme values of the Peclet number. Consequently, the
hydrodynamic effects at classical stirring velocities can to-
tally be discarded for the investigation of particle growth.
This is also illustrated by the particle growth laws presented
below. Indeed, flow effects are known to significantly accel-
erate the kinetics compared to diffusion or reaction-limited
growth �21�, a fact that is not observed in our experiments. In
the following, we use an average stirring speed of 500 rpm.

B. Particle growth law versus temperature
and addition rate

We have undertaken a systematic study of the particle
growth at different addition rates and for various tempera-
tures. Measurements of the kinetic evolution of the particle
size for three values of the addition rate Q �Q=68, 125, and
250 �l /min� performed at three different temperatures �T
=0, 10, and 20 ° C� are presented in Fig. 1. These tempera-
tures are chosen to fulfill the condition of negligible evapo-
ration of the reagents in the argon atmosphere in order to
keep their overall ratio constant in the solution. Mean par-
ticle radii were deduced from the following procedure. We
measure for each sample the time 	P associated to the expo-
nential relaxation of the correlation function versus the scat-
tering angle �. Assuming that growing particles behave as
Rayleigh scatterers, 	P is given by 	P=1 /2Dpq2, where Dp
=kBT /6
�R is the mass diffusion of a particle of radius R,
and q=4
n /�0 sin�� /2� is the modulus of the transfer wave
vector; n is the index of refraction of ethanol in which the
few drops of solution are diluted. Then, by fitting the linear
behavior of 	P versus 1 /q2, we obtain a reliable value of Dp
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and thus of R. An example of variation of 	P�1 /q2� for vari-
ous temporal samplings is given in Fig. 2. The linear varia-
tion expected for Rayleigh particles is experimentally re-
trieved and we deduce the mean particle radius from the
slope. The particle dynamics is also illustrated by TEM
snapshots in Fig. 3 for the ”intermediate” couple �Q
=125 �l /min,T=10 °C�. The particle distribution appears
to be highly monodisperse on the investigated temporal win-
dow, with an almost constant standard deviation smaller than
3%. This shows that the use of continuous addition of mono-
mer offers the opportunity to easily push the limits of mono-
dispersity up to the micrometer range while in closed sys-
tems it is always limited to the submicrometric sizes �6�.

Figure 1 illustrates the dependence of the particle radius
dynamics on the addition rate and the temperature. The
growth can be divided into two parts: during and after the
monomer supply. During the monomer addition, two main
features are observed: �i� the measured growth laws are very
well separated in temperature and �ii� the addition rate has no
influence on them. As shown in Fig. 4, the variation of the
particle radius versus time clearly exhibits a power law be-
havior with a mean measured exponent of 1 /2. By contrast,
the final particle radius reached at the end of the monomer
supply strongly varies with the addition rate as well as the
temperature.

FIG. 1. Growth law of silica particles performed at temperatures
T=0, 10, and 20 ° C for addition rates of TEOS Q=68, 125, and
250 �l /min. A regime R� t1/2 is evidenced during the monomer
addition, while growth saturates to a final value Rf after the end of
the addition. The arrows indicate the time tQ corresponding to the
end of the TEOS addition.

FIG. 2. Linear variation of the relaxation time 	P of the corre-
lation function vs 1/q2 for particle solutions picked in the reactor at
different times t during the growth and quickly diluted in ethanol.
The slope increases with time since it is proportional to 1/DP i.e.,
to R�t�. The experimental conditions correspond to Q=68 �l /min
and T=20 °C.

FIG. 3. Transmission electron micrograph of silica particles

showing their temporal behavior in terms of mean size R̄, shape,
and monodispersity for T=10 °C and Q=125 �l /min. �a� t

=480 s , R̄=101 nm; �b� t=1500 s , R̄=195 nm, �c� t=2400 s , R̄

=265 nm, �d� t=3600 s , R̄=335 nm; and �e� t=7200 s , R̄
=420 nm. The bare scale is 200 nm.

FIG. 4. Zoom of the particle free-growth regime R�t�=���T�t
expected from Eq. �7�; symbols are the same as in Fig. 1. Lines are
power law fits with the forced growth exponent 1 /2 in order to
deduce the amplitude ��T�. Note that experiments performed at the
lowest temperature �T=10 °C� present a larger growth exponent at
the early stage �see text�. The arrows indicate the time tQ corre-
sponding to the end of the TEOS addition. Inset: fit of the tempera-
ture variation of the amplitude ��T� assuming a dependence in ac-
tivation energy 
E=
E�+
ES, where 
E� and 
ES are,
respectively, the activation energy associated to the shear viscosity
of the solution and the molecular heat of silica dissolution.
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IV. GROWTH IN OPEN SYSTEMS: THEORETICAL
BACKGROUND

A. Particle growth rate

To interpret our data, let us extend the formulation of
particle growth rate in closed systems to open ones. As par-
ticle growth does not depend on stirring, the concentration
gradients do not couple with flow. The particle growth rate
is, therefore, expected to be analogous to that found for un-
stirred constant composition systems �22�. It follows that
growth is driven by the transportation of the monomers to
the interface, here by diffusion, and then by their incorpora-
tion into the particle through interface interactions. If the
monomer incorporation �respectively, the diffusion� is the
fastest process, then growth is limited by diffusion �respec-
tively, the interface kinetics�. The growth rate dR /dt of a
spherical particle of radius R�t� is thus described by a general
expression, which includes both bulk diffusion and interface
reaction �13�:

dR

dt
= Ki

�C�t� − Ceq�R��
1 + �R

. �1�

C�t� is the concentration of monomer at a given time t, and
Ceq�R� is the equilibrium concentration at the particle sur-
face; in the following, concentrations are expressed as vol-
ume fractions. Ki is the rate constant for the surface integra-
tion of the monomer and �−1 is a screening length which
compares bulk diffusion to surface integration effect. � is
defined by �=Ki / �Dm��, where � is the molecular volume of
the precipitate. On the other hand, Ceq�R� is classically given
by the Gibbs-Thomson relation, yielding Ceq�R�
=CS exp�� /R��CS�1+� /R�, where CS represents the bulk
solubility, and �=2�� /kBT is a capillary length. � and kB are,
respectively, the liquid/particle surface energy and the Bolt-
zmann constant. By defining the supersaturation � as ��t�
= �C�t�−CS� /CS, the general expression of the particle
growth rate becomes

dR

dt
=

KiCS�

RC

�1 − RC/R�
1 + �R

. �2�

RC=� /� represents the critical radius above which a particle
spontaneously grows and below which it dissolves. Equation
�2� shows that the transition from interface to diffusion lim-
ited growth is, indeed, controlled by the product �R. Growth
is initially limited by the monomer incorporation at the par-
ticle surface ��R�1� and eventually becomes diffusion lim-
ited at large particle radius ��R�1�. As we cannot estimate
the value of � �Ki being unknown�, in the following we
briefly describe the particle growth laws expected in both
cases.

As evidenced by Eq. �2�, the particle growth strongly de-
pends on the temporal behavior of the supersaturation �.
Usually, the kinetics of precipitation is divided in four main
stages �23,24�. �i� Due to the TEOS addition, the solute con-
centration initially increases linearly with time. At this stage,
no particle nucleation exists. �ii� Spontaneous nucleation oc-
curs as soon as the supersaturation reaches its critical value
�C, i.e., when the activation energy for particle nucleation is

of the order of kBT. Particles are formed and grow. Due to
the competition between growth and nucleation, � reaches a
maximum and then starts to decrease, and drops below �C.
After this nucleation regime, �iii� a transient period appears
where � reaches a quasisteady state corresponding to the
so-called “free-growth regime.” At this stage, � becomes too
low to allow the nucleation of new particles and the existing
particles simply grow by drawing solute to their surface. �iv�
Finally, due to the mass conservation, this free-growth re-
gime cannot survive indefinitely, and therefore � starts to
decrease again towards its asymptotic value �=0. Conse-
quently, the critical radius value significantly increases �RC

�1/�� and growth switches to the well-known Ostwald rip-
ening regime, where the material resulting from the dissolu-
tion of some particles �those of radius R�RC� is used by the
others �those of radius R�RC� to continue to grow. Note
that, in the presence of monomer addition, there is a fifth
additional regime. Indeed, when the dissolution of the
smaller particles slows down, the surviving particles simply
grow by the consumption of the incoming material that is
continuously added to the system.

B. Free-growth regime

The particle growth in the free-growth regime is charac-
terized by a constant supersaturation �. Therefore, in the
interface kinetic limited case ��R�1�, Eq. �2� reduces to

dR

dt
=

KiCS�

RC
�1 −

RC

R
	 . �3�

Integration of Eq. �3� for R /RC�1 shows that the particle
size increases linearly with time during the free-growth re-
gime, i.e., R� t.

On the other hand, growth limited by diffusion presents
different kinetic behaviors. In this case ��R�1�, Eq. �2� be-
comes

dR

dt
=

Dm�CS�

RC
2

�1 − RC/R�
R/RC

. �4�

For R /RC�1, integration of Eq. �4� reveals that the diffusion
limited free-growth is characterized by a first R� t behavior
followed by an R� t1/2 regime �20,25�.

The particle number N remains constant during the free-
growth regime �26�, whatever the nature of the mechanism
�interface kinetic or diffusion limited� governing the growth.

These growth mechanisms, which are analogous for both
open and closed systems, have successfully been investi-
gated in experiments involving liquid/liquid phase transitions
�25�. Their extension to inorganic colloid dispersions is much
more recent. Dealing with closed systems, an extensive study
�19� has shown that �i� silica beads grow by the incorpora-
tion of hydrolyzed monomers instead of aggregation of
smaller particles and �ii� the late stage growth is limited by
diffusion. A more recent investigation of the early stage
growth of silica particles in closed conditions �15� has re-
vealed an R� t regime followed by the behavior R� t1/2. It
has also been shown that the number of particles as well as
their mass density remained nearly constant over the inves-
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tigated reaction time period �from 50 to 2000 s�. On the other
hand, in an open system, Sugimoto �12� has explored the
growth of photographic emulsions versus addition rate at T
=70 °C. He showed that AgBr colloids grow as R� t1/2, and
that growth does not depend on the addition rate.

C. Ostwald ripening regime

As previously mentioned, � cannot stay indefinitely con-
stant due to the mass conservation, and therefore must de-
crease again. At this stage, growth switches from the free-
growth regime to the well-known Ostwald ripening. The
particles whose radius is smaller than the actual value of the
critical radius become unstable and dissolve, while larger
ones continue to grow using the dissolved material. Never-
theless, due to the presence of monomer addition, the particle
dissolution eventually stops. Consequently the surviving par-
ticles continue to grow mainly by consuming the flux of
monomer that is continuously added to the system. As the
nucleation rate is negligible during Ostwald ripening, the
size distribution of particles f�R , t�, defined by the particle
number N�t�=
0

�f�R , t�dR, obeys a continuity equation:

� f

�t
�R,t� +

�

�R
�dR

dt
f�R,t�	 = 0. �5�

Since the supersaturation is vanishing, the conservation of
the monomer concentration in the presence of addition leads
to

4


3
�

0

�

f�R,t�R3dR = Qt . �6�

Equations �3�, �5�, and �6� show that the R� t free-growth
obtained for interface limited growth is followed by a ripen-
ing regime characterized by R� t1/2 �27�, as for Ostwald rip-
ening in closed systems �22�. However, whereas for closed
systems the particle number varies as N�R−3 �i.e., N� t−3/2�
�22�, the matter conservation is different for open systems.
One finds N� �kBT / �DmCS�T��
3/2 Q /R, i.e., N� t−1/2, due to
the source term associated to the monomer addition. On the
other hand, for diffusion limited growth, Eqs. �4�–�6� show
that the free-growth regime is followed by a ripening de-
scribed by R� t1/3 �27�; the same growth law is found for
Ostwald ripening in closed systems �28�. The variation of the
number of particles also turns differently. In closed systems,
the number of particles varies as N� t−1 �22� whereas it sta-
bilizes to a stationary value N� �kBTQ� / �DmCS�T�� for open
systems �14,27�. This constant value also corresponds to the
fixed number of particles found in the free-growth regime
�12�.

The confrontation of these predictions to published works
on growth of inorganic colloids is not clear, even in closed
systems. Indeed, very few experiments provide particle
growth laws over significantly long time periods to lead to a
sufficiently reliable measured growth law exponent. In Pon-
toni’s experiment on silica particles �15�, a slow down in
growth is observed after the R� t and R� t1/2 measured re-
gimes, but the transition towards the ripening regime is not
clearly proved. This regime has nonetheless been recently

observed in closed configuration by Oskam et al. �29� during
the coarsening of different types of metal-oxide nanopar-
ticles �zinc and titanium oxide particles, for instance�. On the
other hand, we are not aware of any experiment on colloid
growth dealing with Ostwald ripening in the presence of
monomer addition.

V. DISCUSSION

A. Particle growth rate in the presence of monomer addition

Coming back to our experiments, Fig. 4 shows that the
growth regime observed during the addition of TEOS corre-
sponds to a R� t1/2 behavior. The temporal exponents mea-
sured in Fig. 4 are 0.65±0.07, 0.49±0.02, and 0.53±0.03,
respectively, for T=0, 10, and 20 ° C; the apparently larger
value obtained for T=0 °C is explained in the following sec-
tion. According to Sec. IV, the exponent 1 /2 found during
the monomer addition can either correspond to the general-
ized Ostwald ripening for interface limited growth or to the
free-growth regime in the diffusion limited case. However,
this exponent is obtained since the beginning of measure-
ments, i.e., at a time where the supersaturation cannot be
considered as negligibly small. Therefore any possible link
to Ostwald ripening is ruled out and the observed particle
growth corresponds to the free-growth regime. This means
that the particle growth had already switched from interface-
��R�1� to diffusion-limited ��R�1� at the beginning of the
investigated temporal window. The diffusive origin of the
measured growth law is also confirmed by the persistence of
the R� t1/2 regime just after the end of the addition. Indeed,
as soon as the addition is stopped, the system automatically
switches from open to close. Accordingly, the particle growth
law also switches to that corresponding to a closed configu-
ration. Since the behavior R� t1/2 is momentarily preserved,
this means that growth is still limited by diffusion after the
end of the addition. Finally, as in Pontoni’s experiments �15�,
we do not identify the scaling regime R� t1/3 associated to
the Ostwald ripening between the free-growth regime and
the saturation to the final particle size after the end of the
TEOS addition.

B. Rescaling of growth laws

We show that the particle growth law exponent illustrated
in Fig. 4 corresponds to the free-growth regime of diffusion
limited growth, and that the associated amplitude only de-
pends on temperature. Within the general framework of the
kinetics of first-order phase transitions �23�, a universal de-
scription of the particle growth should be retrieved for inor-
ganic materials using Eq. �4�. This is usually observed upon
plotting the normalized particle radius �=R /RC versus the
normalized time 	=Dm�CS� /RC

3 t rescaled with the diffusive
relaxation time scale associated to the critical radius RC.
However, for experiments which involve a continuous
quenching �30� or addition of monomers, the initial super-
saturation can no longer be defined. As a result, the value of
the critical radius varies continuously, and then prevents the
use of the classical scaling considered for first-order phase
transitions in closed systems. Nevertheless, the regular shift
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in temperature observed in Fig. 1 supports the existence of
some scaling in temperature. For the free-growth regime,
where the supersaturation is constant, we find from Eq. �4�

R = ��2Dm�CS��t . �7�

A priori, three quantities vary with temperature: �, Dm, and
CS in Eq. �7�. Since the behavior of � is difficult to estimate
for open systems �12�, we assume that the supersaturation
does not appreciably vary with temperature over the investi-
gated range. On the other hand, one has Dm�kBT /��T�
where the shear viscosity is given by ��T�
=�0 exp�
E� /kBT� �31� and 
E� is the shear stress activa-
tion energy. Finally, the silica solubility CS depends on the
molecular heat of dissolution 
ES as CS�exp�−
ES /kBT�
�16�. According to Eq. �7�, this means that the particle radius
should rescale as R��kBT exp�−�
E�+
ES� /2kBT��t. The
corresponding fit for the temperature variation of the growth
law amplitude is presented in the inset of Fig. 4. We find

E=
E�+
ES= �0.5±0.1�eV for the investigated tempera-
ture range. Considering the temperature variation of the
shear viscosity of the solution, here mainly composed of eth-
anol �32�, we deduce 
E�=0.14 eV. This leads to 
ES
= �0.36±0.10�eV, which is in very good agreement with al-
ready published data presented in Table I. This value is iden-
tical to that obtained by Hamrouni �33�, and falls within the
range of 
ES= �0.26±0.03�eV �16� to 
ES=0.44 eV �34�
found for the molecular heat of dissolution for silica. Then,
according to Eq. �7�, by plotting the particle growth laws
presented in Fig. 1 versus the rescaled time 	
= �kBT /
E�exp�−
E /kBT�t, our data set should point out a
single-scaled dynamics for the growth during the monomer
addition. This data reduction is shown in Fig. 5 for the whole
set of experiments presented in Fig. 1. The master curve also
enhances and demonstrates the existence of a well-defined
crossover between the two regimes R� t and R� t1/2 expected
for diffusion limited free-growth. Indeed, even if the R� t
regime could be suspected in Fig. 1 for the early growth
observed at T=273 K, i.e., at low temperature where the
reaction rate is the slowest, it is now clearly identified by the
scaling of the full data set. Note that the R� t regime has
already been observed in closed systems �15�. Our data are
nevertheless at variance with the late stage predictions for
open systems as they do not even suggest the existence of an
Ostwald ripening characterized by its R� t1/3 behavior. Fi-
nally, the description of the particle growth by a master curve
demonstrates a posteriori that the supersaturation does not
appreciably vary with temperature during the monomer ad-
dition.

C. Saturation of the particle growth

The observed scaling obviously breaks down, after some
delay, when the addition of the monomer is stopped. Stop-
ping the addition has two major consequences on the particle
growth. From the fundamental point of view, the growth
mechanisms change due to the switching from an open to a
closed configuration. The R� t1/2 is momentarily preserved,
as illustrated in Figs. 1 and 4 for time t� tQ, and corresponds
from now on to the free-growth regime in closed systems.
Then, growth deviates towards a saturation of the particle
radius. In contrast to particle growth performed in other
metal-oxide syntheses �29�, Ostwald ripening for closed sys-
tems is not observed in our experiments. This is in good
agreement with most of the experiments involving growth of
silica particles, such as Pontoni’s ones �15� which do not
show any Ostwald ripening either, when all the reagents are
added together in a single step. This result could be ex-
plained by the experimental conditions required for silica
particle synthesis, particularly in terms of pH of the solution,
which are not strong enough to allow for silica dissolution
�16�. Then, the combination of both aspects, i.e., the forma-
tion of a set of monodisperse particles and the lack of ob-
servable Ostwald ripening, strongly suggests that the con-
stant number of particles N during the free-growth regime is
preserved until the end of the growth, and thus corresponds
to the final particle number. To check this assumption, we
consider the available models of growth in open systems

TABLE I. Molecular heat of dissolution of silica 
ES. Comparison between data published in the litera-
ture and the values obtained from the fits of both the measured particle growth laws and the addition rate
dependence of the final particle sizes.

Iler
�Ref. �16��

Hamrouni et al.
�Ref. �33��

Robie et al.
�Ref. �34��

From particle growth:
Eq. �7�

From final particle size:
Eq. �10�


ES�eV� 0.26±0.03 0.35 0.44 0.36±0.10 0.21±0.02

FIG. 5. Plot in rescaled time �R ,	= �kBT /
E�exp�−
E /kBT�t�
of the nine experiments presented in Fig. 1. The two successive
regimes R�	 and R�	1/2 expected for the diffusion limited particle
free-growth are clearly evidenced by the data reduction onto a mas-
ter curve.
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�12,27�. Based on particle growth limited by diffusion, they
all show that the particle number N versus addition rate be-
haves as

N = �
QkBT

8
Dm��CS
, �8�

where � is a numeric factor which depends on the chosen
model �1���3�; the most reliable theory gives �=1.57
�12�. This prediction for free-growth limited by diffusion,
particularly the behavior of N versus the addition rate Q, was
experimentally verified in double-jet precipitation for silver
halides production �11–13� and also for inorganic metal-
oxide materials �zinc oxide colloid synthesis �9�, for in-
stance�. Using mass conservation, the particle number N is
related to the final radius Rf by

N
4

3

Rf

3 = vSiO2
, �9�

where vSiO2
is the volume of produced silica corresponding

to the added TEOS. By combining Eqs. �8� and �9�, the re-
lation between the final particle radius and the addition rate
becomes

Rf = �6Dm�vSiO2
�CS

�kBT
�1/3

Q−1/3. �10�

Consequently, in contrast to what occurs in the free-growth
regime, the final particle size is expected to depend on the
addition rate. The analogy with jet-precipitation leads to the
behavior Rf �Q−1/3. This predicted behavior, which is quan-
titatively demonstrated over more than two orders of magni-
tude in addition rate Q �8�, is illustrated in Fig. 6 for the
experiments presented in Fig. 1. Taking into account the in-

vestigated range of addition rates, the agreement is fairly
good. Note that these measurements give an additional proof
for diffusion limited growth since Ostwald ripening for in-
terface limited growth in the presence and the absence of
monomer addition are, respectively, characterized by N
�1/R� t−1/2 and N�1/R−3� t−3/2 �see Sec. IV C�, which can-
not be supported by experimental data. Moreover, as pre-
dicted by Eq. �10� and observed in Fig. 6, the final particle
radius also varies with temperature. Using the temperature
dependence of both the mass diffusion Dm and the silica
solubility CS, we should then be able to retrieve by an inde-
pendent way, i.e., without considering the particle growth
rate, the molecular heat of dissolution 
ES of silica. By forc-
ing the exponent of the Rf�Q� variation to be −1/3, we get
the temperature behavior of the amplitude factor. It is ex-
pected to behave as exp�−
E /3kBT� from Eq. �10�, where

E=
E�+
ES. The corresponding fit is presented in the
inset of Fig. 6. We find 
E=
E�+
ES= �0.35±0.02� eV for
the investigated temperature range. Considering 
E�

=0.14 eV, this leads to 
ES= �0.21±0.02� eV. As illustrated
in Table I, this value is in good agreement with both the
value previously deduced from particle growth laws and the
few already published data �16,33,34�.

VI. CONCLUSION

We have experimentally investigated the formation and
the growth of monodisperse mesoscopic silica particles by
analyzing the effects of the progressive addition of one of the
reagents in the reactor. Our goal was twofold. At first, we
wanted to implement a reliable technique to kinetically con-
trol colloid synthesis up to the microscopic size since classi-
cal methods usually fail for this length range �emergence of
particle polydispersity�. Indeed, the micron range is often
considered as a sort of crossover between the nano- and the
macro-world, called “mesoscopia” �35�, that does not take
advantage of the physical properties underlined by one or the
other length scale. Then, we were interested in a description
of metal-oxide particle growth in terms of universal dynamic
scaling, in order to discuss the existence of a unified picture
within the classical first-order phase transition area.

To investigate the pertinence of the relevant external pa-
rameters, experiments were performed by varying the addi-
tion rate for different temperatures. In the presence of mono-
mer addition, the formed silica particles are spherical and
monodisperse all over the investigated size range �i.e., for
particle radii R from 80 to 600 nm�. At low Peclet number,
measurements reveal that the growth of mesoscopic silica
colloids is not affected at all by the monomer addition, but it
simply depends on temperature. Moreover, the growth law
exponents show that growth in the presence of continuous
addition is limited by diffusion and corresponds to the so-
called “free-growth regime,” generalizing results already ob-
tained in closed systems. As the temperature is the only rel-
evant parameter during the monomer addition, the
corresponding variation was used to rescale the dynamical
data according to behaviors predicted for diffusion limited
growth. The data reduction onto a single master curve is
clearly evidenced. This scaling also enhances the two par-

FIG. 6. Evolution of the final particle radius Rf vs the addition
rate Q of TEOS for temperatures T=0, 10, and 20 ° C. Lines are
power law fits with the forced exponent −1/3 expected from Eq.
�10�. Inset: fit of the temperature variation of the associated ampli-
tude assuming a dependence in activation energy 
E=
E�+
ES,
where 
E� and 
ES are, respectively, the activation energy associ-
ated to the shear viscosity in the solution and the molecular heat of
silica dissolution.
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ticle growth laws expected for free-growth �i.e., R� t and
R� t1/2� whereas the first one �R� t� is partly hidden in un-
scaled data. Finally, by using the temperature dependence of
the amplitude of the particle growth, we have quantitatively
deduced the molecular heat of dissolution of silica; the result
compares very well with already published data. Conse-
quently, our investigation strongly supports the fact that ki-
netic theories of first-order phase transitions can easily be
applied to the growth of inorganic particles.

On the other hand, if the monomer addition is stopped, the
observed master behavior cannot survive any longer. After
some time delay, the particle growth irreversibly deviates
from the scaled regime to asymptotically saturate to a final
size. As opposed to the growth process, the final particle size
is affected by the addition rate. Using an analogy with crystal
formation in jet precipitation, we have explored the varia-
tions of the final particle size versus both the addition rate
and the temperature. The power law expected theoretically
for the variation of the final particle size versus addition rate
is experimentally retrieved. A quantitative interpretation of
the temperature behavior of the associated amplitude gives

us the opportunity to determine, by a different way and in-
dependently from particle growth, the activation energy as-
sociated to the silica solubility.

More generally, our investigation may represent a first
step toward a unified description of the processes involved in
controlled colloid synthesis. Moreover, from a fundamental
point of view, the observation of master behaviors for colloi-
dal growth also brings new insights on the kinetic of precipi-
tates in open systems �36,37�. Indeed, even for the most fa-
mous and spectacular example of coarsening in an open
system, the so-called “Liesegang phenomenon” �38� where
the precipitation of weakly soluble salts leads to periodic
patterns, a close examination of the growth of the particles
that form these patterns �39� still misses both theoretical de-
velopments and experimental investigations.
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